By Topic

Filter Bank Property of Multivariate Empirical Mode Decomposition

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Naveed ur Rehman ; Communications and Signal Processing Research Group, Dept. of Electrical and Electronic Engineering, Imperial College London, London, U.K. ; Danilo P. Mandic

The multivariate empirical mode decomposition (MEMD) algorithm has been recently proposed in order to make empirical mode decomposition (EMD) suitable for processing of multichannel signals. To shed further light on its performance, we analyze the behavior of MEMD in the presence of white Gaussian noise. It is found that, similarly to EMD, MEMD also essentially acts as a dyadic filter bank on each channel of the multivariate input signal. However, unlike EMD, MEMD better aligns the corresponding intrinsic mode functions (IMFs) from different channels across the same frequency range which is crucial for real world applications. A noise-assisted MEMD (N-A MEMD) method is next proposed to help resolve the mode mixing problem in the existing EMD algorithms. Simulations on both synthetic signals and on artifact removal from real world electroencephalogram (EEG) support the analysis.

Published in:

IEEE Transactions on Signal Processing  (Volume:59 ,  Issue: 5 )