By Topic

Domain-Specific Image Analysis for Cervical Neoplasia Detection Based on Conditional Random Fields

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Park, S.Y. ; Sci. & Technol. Int. Med. Syst., San Diego, CA, USA ; Sargent, D. ; Lieberman, R. ; Gustafsson, U.

This paper presents a domain-specific automated image analysis framework for the detection of pre-cancerous and cancerous lesions of the uterine cervix. Our proposed framework departs from previous methods in that we include domain-specific diagnostic features in a probabilistic manner using conditional random fields. Likewise, we provide a novel window-based performance assessment scheme for 2D image analysis which addresses the intrinsic problem of image misalignment. Image regions corresponding to different tissue types are indentified for the extraction of domain-specific anatomical features. The unique optical properties of each tissue type and the diagnostic relationships between neighboring regions are incorporated in the proposed conditional random field model. The validity of our method is examined using clinical data from 48 patients, and its diagnostic potential is demonstrated by a performance comparison with expert colposcopy annotations, using histopathology as the ground truth. The proposed automated diagnostic approach can support or potentially replace conventional colposcopy, allow tissue specimen sampling to be performed in a more objective manner, and lower the number of cervical cancer cases in developing countries by providing a cost effective screening solution in low-resource settings.

Published in:

Medical Imaging, IEEE Transactions on  (Volume:30 ,  Issue: 3 )