Scheduled System Maintenance:
On May 6th, single article purchases and IEEE account management will be unavailable from 8:00 AM - 12:00 PM ET (12:00 - 16:00 UTC). We apologize for the inconvenience.
By Topic

Coding and Detection for Rectangular-Grain TDMR Models

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Lu Pan ; Univ. of Arizona, Tucson, AZ, USA ; Ryan, W.E. ; Wood, R. ; Vasic, B.

This paper studies the performance of a serial turbo code on two simplified rectangular-grain models of recording media for two-dimensional (2-D) magnetic recording at a density of more than 0.5 bits/grain. We derive one-dimensional (1-D) and 2-D rectangular-grain media models and from these present finite-state-machine (FSM) representations. From the FSM for the 1-D model we computed achievable information rates assuming independent and uniformly distributed (i.u.d.) binary inputs. From the (approximate) FSM for the 2-D model, we present a detector. We then present a serial turbo code architecture with constituent convolutional codes that is capable of achieving 80% of i.u.d. capacity for the 1-D model and 65% of the average of published upper and lower bounds on capacity for the 2-D model. We also present schemes which combine the advantages of an (inner) repetition code and an (outer) serial turbo code. One such scheme cleverly arranges the three bits in each three-fold repetition into the shape of an “L”. This obviates the need for a sequence detector and converts the 2-D channel model into an equivalent binary symmetric channel.

Published in:

Magnetics, IEEE Transactions on  (Volume:47 ,  Issue: 6 )