Cart (Loading....) | Create Account
Close category search window
 

A Linear Correction for Principal Component Analysis of Dynamic Fluorescence Diffuse Optical Tomography Images

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Xin Liu ; Dept. of Biomed. Eng., Tsinghua Univ., Beijing, China ; Fei Liu ; Jing Bai

The analysis of dynamic fluorescence diffuse optical tomography (D-FDOT) is important both for drug delivery research and for medical diagnosis and treatment. The low spatial resolution and complex kinetics, however, limit the ability of FDOT in resolving drug distributions within small animals. Principal component analysis (PCA) provides the capability of detecting and visualizing functional structures with different kinetic patterns from D-FDOT images. A particular challenge in using PCA is to reduce the level of noise in D-FDOT images. This is particularly relevant in drug study, where the time-varying fluorophore concentration (drug concentration) will result in the reconstructed images containing more noise and, therefore, affect the performance of PCA. In this paper, a new linear corrected method is proposed for modeling these time-varying fluorescence measurements before performing PCA. To evaluate the performance of the new method in resolving drug biodistribution, the metabolic processes of indocyanine green within mouse is dynamically simulated and used as the input data of PCA. Simulation results suggest that the principal component (PC) images generated using the new method improve SNR and discrimination capability, compared to the PC images generated using the uncorrected D-FDOT images.

Published in:

Biomedical Engineering, IEEE Transactions on  (Volume:58 ,  Issue: 6 )

Date of Publication:

June 2011

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.