Cart (Loading....) | Create Account
Close category search window
 

The Effect of Surface Chemistry on MEMS Stiction in an Ultralow-Humidity Environment

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Sammoura, F. ; MEMS/Sensors Div., Analog Devices, Wilmington, MA, USA ; Hancer, M. ; Yang, K.

The susceptibility of microelectromechanical systems (MEMS) devices for stiction, treated with two different antistiction coatings, is investigated in ambient and ultralow-humidity environmental conditions. Wafer-level testing with a pull-in/pull-out voltage technique and a current compliant source was used to detect stiction on capped and uncapped wafers. Historically, the devices coated with a phenyl siloxane coating and capped in a dry nitrogen environment failed due to stiction at the wafer level with pull-in/pull-out tests as well as the packaged parts during tap testing. Although the uncapped devices did not show stiction at ambient humidity using the pull-in/pull-out detection technique, successive drops in the pull-out voltage were detected as the conditions of the test control chamber became drier. The sensitivity of the stiction performance to environment conditions was eliminated when the MEMS devices were coated in a fluorinated silane coating. The results are explained in terms of wetting angle and surface chemistry behavior of the coatings, resulting in improved hydrophobicity, thus mitigating adhesive capillary forces.

Published in:

Microelectromechanical Systems, Journal of  (Volume:20 ,  Issue: 2 )

Date of Publication:

April 2011

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.