By Topic

Driving mechanism, design, fabrication process, and experiments of a cylindrical ultrasonic linear microactuator

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Sheng Wang ; Dept. of Mechano-Micro Eng., Tokyo Inst. of Technol., Yokohama, Japan ; Dongming Sun ; Sakurai, J. ; Keebong Choi
more authors

A new type of cylindrical ultrasonic linear microactuator (CULMA) is introduced. The traveling wave generation condition in the stator is presented, which was confirmed using simulation and experimentation. The design and fabrication process to develop the stator is described. The stator was successfully fabricated using metallic glass and a sputtering method, and the vibration of the prototype matched the simulation results. When the driving frequency is at 626 kHz, the traveling wave in the stator was observed. Loaded with a pipe slider, the slider movement was experimentally demonstrated and the motion measured with 26 mm/s in peak speed. This paper presents a traveling wave generation method in a CULMA which would also available in other microactuators or MEMS-scale ones.

Published in:

Ultrasonics, Ferroelectrics, and Frequency Control, IEEE Transactions on  (Volume:58 ,  Issue: 1 )