By Topic

Green modulations in energy-constrained wireless sensor networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Abouei, J. ; Dept. of Electr. Eng., Yazd Univ., Yazd, Iran ; Plataniotis, K.N. ; Pasupathy, S.

Owing to the unique characteristics of sensor devices, finding the energy-efficient modulation with a low-complexity implementation (refereed to as green modulation) poses significant challenges in the physical layer design of wireless sensor networks (WSNs). Towards this goal, the authors present an in-depth analysis on the energy efficiency of various modulation schemes using realistic models in the IEEE 802.15.4 standard to find the optimum distance-based scheme in a WSN over Rayleigh and Rician fading channels with path loss. The authors describe a proactive system model according to a flexible duty-cycling mechanism utilised in practical sensor apparatus. The present analysis includes the effect of the channel bandwidth and the active mode duration on the energy consumption of popular modulation designs. Path-loss exponent and DC-DC converter efficiency are also taken into consideration. In considering the energy efficiency and complexity, it is demonstrated that among various sinusoidal carrier-based modulations, the optimised non-coherent M-ary frequency shift keying (NC-MFSK) is the most energy-efficient scheme in sparse WSNs for each value of the path-loss exponent, where the optimisation is performed over the modulation parameters. In addition, the authors show that the on-off keying displays a significant energy saving as compared to the optimised NC-MFSK in dense WSNs with small values of path-loss exponent.

Published in:

Communications, IET  (Volume:5 ,  Issue: 2 )