By Topic

Kalman smoothing-based adaptive frequencydomain channel estimation for uplink multiple-input multiple-output orthogonal frequency division multiple access systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $33
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
J. Gao ; Department of Electrical Engineering and Electronics, The University of Liverpool, Brownlow Hill, Liverpool L69 3GJ, UK ; X. Zhu ; Y. Wu ; A. K. Nandi

This study investigates Kalman smoothing (KS)-based frequency-domain channel estimation for uplink multiple-input multiple-output (MIMO) orthogonal frequency division multiple access (OFDMA) systems with time-varying channels. The proposed KS channel estimation scheme significantly outperforms the recursive least squares (RLS) channel estimation in the high signal-to-noise ratio (SNR) range, because of more effective exploitation of the signal information. In addition, channel interpolation is employed to improve the channel estimation accuracy by exploiting the correlation between adjacent subcarriers. The proposed KS channel estimator can also achieve a bit error rate (BER) performance which is close to the case with perfect channel state information (CSI) with a training overhead of only 5%.

Published in:

IET Communications  (Volume:5 ,  Issue: 2 )