By Topic

Using two global positioning system satellites to improve wireless fidelity positioning accuracy in urban canyons

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $33
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
B. Li ; School of Surveying and Spatial Information Systems, University of New South Wales, Sydney, Australia ; Y. Khing Tan ; A. G. Dempster

It is well known that a global positioning system (GPS) receiver needs to `see` at least four satellites to provide a three-dimensional fix solution. But in difficult environments such as an urban canyon, the number of `visible` satellites is often not enough. Wireless fidelity (WiFi) signals have been utilised for positioning mainly based on the fingerprinting technology. However, the accuracy of WiFi positioning outdoors is from several tens of metres to more than one hundred metres. This study proposes a new methodology to integrate WiFi positioning technology and GPS to improve positioning accuracy in urban canyons. When only two GPS satellites are visible, the pseudorange observations can be used to generate a time difference of arrival (TDOA) measurement. The TDOA generates a hyperboloid surface which can be intersected with the surface of the Earth and shows the possible location of the user on that line of position. Integrating this method with the WiFi fingerprinting technology can increase the positioning performance significantly. The test results show that the positioning accuracy can be improved by more than 50% if the new method can be applied.

Published in:

IET Communications  (Volume:5 ,  Issue: 2 )