By Topic

High-Performance Adaptive Perturb and Observe MPPT Technique for Photovoltaic-Based Microgrids

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Ahmed K. Abdelsalam ; Department of Electrical and Computer Engineering, Texas A&M University at Qatar, Doha, Qatar ; Ahmed M. Massoud ; Shehab Ahmed ; Prasad N. Enjeti

Solar photovoltaic (PV) energy has witnessed double-digit growth in the past decade. The penetration of PV systems as distributed generators in low-voltage grids has also seen significant attention. In addition, the need for higher overall grid efficiency and reliability has boosted the interest in the microgrid concept. High-efficiency PV-based microgrids require maximum power point tracking (MPPT) controllers to maximize the harvested energy due to the nonlinearity in PV module characteristics. Perturb and observe (P&O) techniques, although thoroughly investigated in previous research, still suffer from several disadvantages, such as sustained oscillation around the MPP, fast tracking versus oscillation tradeoffs, and user predefined constants. In this paper, a modified P&O MPPT technique, applicable for PV systems, is presented. The proposed technique achieves: first, adaptive tracking; second, no steady-state oscillations around the MPP; and lastly, no need for predefined system-dependent constants, hence provides a generic design core. A design example is presented by experimental implementation of the proposed technique. Practical results for the implemented setup at different irradiance levels are illustrated to validate the proposed technique.

Published in:

IEEE Transactions on Power Electronics  (Volume:26 ,  Issue: 4 )