By Topic

Inference of Nonlinear State-Space Models for Sandwich-Type Lateral Flow Immunoassay Using Extended Kalman Filtering

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Nianyin Zeng ; College of Electrical Engineering and Automation, Fuzhou University, Fuzhou, China ; Zidong Wang ; Yurong Li ; Min Du
more authors

In this paper, a mathematical model for sandwich-type lateral flow immunoassay is developed via short available time series. A nonlinear dynamic stochastic model is considered that consists of the biochemical reaction system equations and the observation equation. After specifying the model structure, we apply the extended Kalman filter (EKF) algorithm for identifying both the states and parameters of the nonlinear state-space model. It is shown that the EKF algorithm can accurately identify the parameters and also predict the system states in the nonlinear dynamic stochastic model through an iterative procedure by using a small number of observations. The identified mathematical model provides a powerful tool for testing the system hypotheses and also for inspecting the effects from various design parameters in both rapid and inexpensive way. Furthermore, by means of the established model, the dynamic changes in the concentration of antigens and antibodies can be predicted, thereby making it possible for us to analyze, optimize, and design the properties of lateral flow immunoassay devices.

Published in:

IEEE Transactions on Biomedical Engineering  (Volume:58 ,  Issue: 7 )