By Topic

Feedback Stabilization of Switching Discrete-Time Systems via Lie-Algebraic Techniques

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Hernan Haimovich ; CONICET and Laboratorio de Sistemas Dinámicos y Procesamiento de Información, Departamento de Control, Facultad de Cs. Exactas, Ingeniería y Agrimensura , Universidad Nacional de Rosario, Rosario, Argentina ; Julio H. Braslavsky ; Flavia E. Felicioni

This technical note addresses the stabilization of switching discrete-time linear systems with control inputs under arbitrary switching. A sufficient condition for the uniform global exponential stability (UGES) of such systems is the existence of a common quadratic Lyapunov function (CQLF) for the component subsystems, which is ensured when the closed-loop component subsystem matrices are stable and generate a solvable Lie algebra. The present work develops an iterative algorithm that seeks the feedback maps required for stabilization based on the previous Lie-algebraic condition. The main theoretical contribution of the technical note is to show that this algorithm will find the required feedback maps if and only if the Lie-algebraic problem has a solution. The core of the proposed algorithm is a common eigenvector assignment procedure, which is executed at every iteration. We also show how the latter procedure can be numerically implemented and provide a key structural condition which, if satisfied, greatly simplifies the required computations.

Published in:

IEEE Transactions on Automatic Control  (Volume:56 ,  Issue: 5 )