By Topic

Complete Characterization of an Optical Pulse Based on Temporal Interferometry Using an Unbalanced Temporal Pulse Shaping System

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Chao Wang ; Microwave Photonics Res. Lab., Univ. of Ottawa, Ottawa, ON, Canada ; Jianping Yao

We propose and demonstrate a simple method for the full characterization of an ultrashort optical pulse based on temporal interferometry, using an unbalanced temporal pulse shaping (UB-TPS) system. The UB-TPS system consists of a Mach-Zehnder modulator and two dispersive elements (DEs) having opposite dispersion, but nonidentical in magnitude. The entire system can be considered as a typical balanced TPS system for a real-time Fourier transformation to generate two time-delayed replicas of the input optical pulse, followed by a residual DE to perform a second real-time Fourier transformation to convert the two time-delayed pulse replicas to two frequency-sheared optical spectra. The spectral interferometry is performed in the time domain. The spectral magnitude and phase information of the input optical pulse is accurately and unambiguously reconstructed from the recorded temporal interference pattern based on a Fourier transform algorithm. Compared with a conventional pulse characterization system based on linear interferometric measurement using an optical interferometer implemented by using discrete components, the proposed system features better stability, higher adaptability, and single-shot measurement. The use of the proposed system for the characterization of a femtosecond pulse before and after passing through a 60-m-long single-mode fiber is experimentally demonstrated.

Published in:

Lightwave Technology, Journal of  (Volume:29 ,  Issue: 5 )