By Topic

Differential Evolution With Composite Trial Vector Generation Strategies and Control Parameters

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Yong Wang ; Sch. of Inf. Sci. & Eng., Central South Univ., Changsha, China ; Zixing Cai ; Qingfu Zhang

Trial vector generation strategies and control parameters have a significant influence on the performance of differential evolution (DE). This paper studies whether the performance of DE can be improved by combining several effective trial vector generation strategies with some suitable control parameter settings. A novel method, called composite DE (CoDE), has been proposed in this paper. This method uses three trial vector generation strategies and three control parameter settings. It randomly combines them to generate trial vectors. CoDE has been tested on all the CEC2005 contest test instances. Experimental results show that CoDE is very competitive.

Published in:

Evolutionary Computation, IEEE Transactions on  (Volume:15 ,  Issue: 1 )