Scheduled System Maintenance:
On Monday, April 27th, IEEE Xplore will undergo scheduled maintenance from 1:00 PM - 3:00 PM ET (17:00 - 19:00 UTC). No interruption in service is anticipated.
By Topic

A modular architecture for a 6.4-Gbyte/s, 8-Mb DRAM-integrated media chip

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

9 Author(s)
Watanabe, T. ; Central Res. Lab., Hitachi Ltd., Tokyo, Japan ; Fujita, R. ; Yanagisawa, K. ; Tanaka, H.
more authors

A modular architecture for a DRAM-integrated, multimedia chip with a data transfer rate of 6 to 12 Gbyte/s is proposed. The architecture offers the design flexibility in terms of both DRAM capacity and the logic-memory interface for use in a wide variety of applications. A DRAM macro built from cascadable DRAM bank modules having a 256-kb memory capacity and 128-b I/Os provides flexibility and reconfigurability of DRAM capacity and a high data transfer rate with an area of 6.4 mm2 /Mb. A data transfer circuit (called the “reconfigurable data I/O attachment”), which is attached to the I/O lines of the DRAM macro, provides a flexible logic-memory interface by changing the data-transfer routes between the DRAM macro and logic circuits in real time. A 6.4-Gbyte/s test chip (called the “media chip”) for three-dimensional computer graphics was fabricated to test the proposed design methodology. It integrates an 8-Mb DRAM and four pixel processors on an 8.35×14.6-mm chip by using a 0.4-μm CMOS design rule

Published in:

Solid-State Circuits, IEEE Journal of  (Volume:32 ,  Issue: 5 )