Scheduled System Maintenance on May 29th, 2015:
IEEE Xplore will be upgraded between 11:00 AM and 10:00 PM EDT. During this time there may be intermittent impact on performance. We apologize for any inconvenience.
By Topic

Delay Analysis and Optimality of Scheduling Policies for Multihop Wireless Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Gupta, G.R. ; Sch. of Electr. & Comput. Eng., Purdue Univ., West Lafayette, IN, USA ; Shroff, N.B.

We analyze the delay performance of a multihop wireless network with a fixed route between each source-destination pair. We develop a new queue grouping technique to handle the complex correlations of the service process resulting from the multihop nature of the flows. A general set-based interference model is assumed that imposes constraints on links that can be served simultaneously at any given time. These interference constraints are used to obtain a fundamental lower bound on the delay performance of any scheduling policy for the system. We present a systematic methodology to derive such lower bounds. For a special wireless system, namely the clique, we design a policy that is sample-path delay-optimal. For the tandem queue network, where the delay-optimal policy is known, the expected delay of the optimal policy numerically coincides with the lower bound. We conduct extensive numerical studies to suggest that the average delay of the back-pressure scheduling policy can be made close to the lower bound by using appropriate functions of queue length.

Published in:

Networking, IEEE/ACM Transactions on  (Volume:19 ,  Issue: 1 )