By Topic

Long-range structure of Cu(InxGa1-x)3Se5: A complementary neutron and anomalous x-ray diffraction study

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

13 Author(s)
Lehmann, S. ; Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, 14109 Berlin, Germany ; Fuertes Marron, D. ; Leon, M. ; Feyerherm, R.
more authors

Your organization might have access to this article on the publisher's site. To check, click on this link:http://dx.doi.org/+10.1063/1.3524183 

Distinguishing the scattering contributions of isoelectronic atomic species by means of conventional x-ray- and/or electron diffraction techniques is a difficult task. Such a problem occurs when determining the crystal structure of compounds containing different types of atoms with equal number of electrons. We propose a new structural model of Cu(InxGa1-x)3Se5 which is valid for the entire compositional range of the CuIn3Se5CuGa3Se5 solid solution. Our model is based on neutron and anomalous x-ray diffraction experiments. These complementary techniques allow the separation of scattering contributions of the isoelectronic species Cu+ and Ga3+, contributing nearly identically in monoenergetic x-ray diffraction experiments. We have found that CuIII3Se5 (III=In,Ga) in its room temperature near-equilibrium modification exhibits a modified stannite structure (space group I42m). Different occupation factors of the species involved, Cu+, In3+, Ga3+, and vacancies have been found at three different cationic positions of the structure (Wyckoff sites 2a, 2b, and 4d) depending on the composition of the compound. Significantly, Cu+ does not occupy the 2b site for the In-free compound, but does for the In-containing case. Structural parameters, including lattice - - constants, tetragonal distortions, and occupation factors are given for samples covering the entire range of the CuIn3Se5CuGa3Se5 solid solution. At the light of the result, the denotation of Cu-poor 1:3:5 compounds as chalcopyrite-related materials is only valid in reference to their composition.

Published in:

Journal of Applied Physics  (Volume:109 ,  Issue: 1 )