By Topic

Automatic feature selection and classification of physical and mental load using data from wearable sensors

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Parkka, J. ; Tech. Res. Centre of Finland, Tampere, Finland ; Ermes, M. ; van Gils, M.

Long-term monitoring of health is essential in many chronic conditions, but automatic monitoring is not yet utilized routinely with mental stress. Accelerometers, magnetometers, ECG, respiratory effort, skin temperature and pulse oximetry were used with 12 health volunteers in this study for monitoring 1) heavy mental load, 2) normal mental load, 3) walking, 4) running and 5) lying. Heavy mental load consisted of a 20-min IQ test and normal mental load was represented by reading a comic book. Automatic feature selection using sequential forward search was used to select the best features for classification of the five activities. Normalized heart rate, utilizing activity context information was found to be the most powerful feature for discriminating heavy mental load from normal. Classification accuracy for all 5 activities was 89% with a custom decision tree and with a k-nearest neighbor classifier and 85% with an artificial neural network.

Published in:

Information Technology and Applications in Biomedicine (ITAB), 2010 10th IEEE International Conference on

Date of Conference:

3-5 Nov. 2010