By Topic

Support Vector Machine ensembles using features distribution among subsets for enhancing microarray data classification

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Ahmed, E. ; Fac. of Comput. & Inf., Cairo Univ., Cairo, Egypt ; El-Gayar, N. ; El-Azab, I.A.

Support Vector Machines (SVMs) ensembles have been widely used to improve classification accuracy in complicated pattern recognition tasks. In this work we propose to apply an ensemble of SVMs coupled with feature-subset selection methods to aleviate the curse of dimensionality associated with expression-based classification of DNA microarray data. We compare the single SVM classifier to SVM ensembles applying two different feature-subset selection techniques, namely random selection and k-means clustering, the base classifiers are combined using either majority vote or SVM fusion. Two real-world benchmarks datasets are used to evaluate and compare the performance. Experimental results show that the SVM ensemble of SVM base classifiers using k-means clustering for feature-subset selection and employing an SVM combiner achieve the best classification accuracy, and that feature-subset-selection methods can have considerable impact on the classification accuracy.

Published in:

Intelligent Systems Design and Applications (ISDA), 2010 10th International Conference on

Date of Conference:

Nov. 29 2010-Dec. 1 2010