By Topic

Using context history to personalize a resource recommender via a genetic algorithm

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Ciaramella, A. ; IMT Lucca Inst. for Adv. Studies, Lucca, Italy ; Cimino, M.G.C.A. ; Lazzerini, B. ; Marcelloni, F.

Situation awareness is a promising approach to recommend to a mobile user the most suitable resources for a specific situation. However, determining the correct user situation is not a simple task since users have different habits that may affect the way in which the situations arise. Thus, an appropriate tuning aimed at adapting the situation recognizer to the specific user is desirable to make a resource recommender more effective. In this paper, we show how this objective can be achieved by collecting data during the interaction of the user with the mobile device and using this context history to personalize the resource recommender by a genetic algorithm. To describe our approach, we adopt a recently proposed resource recommender which exploits fuzzy linguistic variables to manage the inherent vagueness of some contextual parameters. Experimental results on a real business case show that the responsiveness and modeling capabilities of the recommender increase, thus validating the proposed approach.

Published in:

Intelligent Systems Design and Applications (ISDA), 2010 10th International Conference on

Date of Conference:

Nov. 29 2010-Dec. 1 2010