By Topic

Type II codes over Z4

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
A. Bonnecaze ; CNRS, Sophia Antipolis, France ; P. Sole ; C. Bachoc ; B. Mourrain

Type II Z4-codes are introduced as self-dual codes over the integers modulo 4 containing the all-one vector and with Euclidean weights multiple of 8. Their weight enumerators are characterized by means of invariant theory. A notion of extremality for the Euclidean weight is introduced. Their binary images under the Gray map are formally self-dual with even weights. Extended quadratic residue Z4-codes are the main example of this family of codes. They are obtained by Hensel lifting of the classical binary quadratic residue codes. Their binary images have good parameters. With every type II Z4-code is associated via construction A modulo 4 an even unimodular lattice (type II lattice). In dimension 32, we construct two unimodular lattices of norm 4 with an automorphism of order 31. One of them is the Barnes-Wall lattice BW32

Published in:

IEEE Transactions on Information Theory  (Volume:43 ,  Issue: 3 )