By Topic

A Little More, a Lot Better: Improving Path Quality by a Path-Merging Algorithm

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Raveh, B. ; Dept. of Microbiol. & Mol. Genetics, Hebrew Univ., Jerusalem, Israel ; Enosh, A. ; Halperin, D.

Sampling-based motion planners are an effective means to generate collision-free motion paths. However, the quality of these motion paths (with respect to quality measures, such as path length, clearance, smoothness, or energy) is often notoriously low, especially in high-dimensional configuration spaces. We introduce a simple algorithm to merge an arbitrary number of input motion paths into a hybrid output path of superior quality, for a broad and general formulation of path quality. Our approach is based on the observation that the quality of certain subpaths within each solution may be higher than the quality of the entire path. A dynamic-programming algorithm, which we recently developed to compare and cluster multiple motion paths, reduces the running time of the merging algorithm significantly. We tested our algorithm in motion-planning problems with up to 12 degrees of freedom (DOFs), where our method is shown to be particularly effective. We show that our algorithm is able to merge a handful of input paths produced by several different motion planners to produce output paths of much higher quality.

Published in:

Robotics, IEEE Transactions on  (Volume:27 ,  Issue: 2 )