By Topic

An Adaptive Neural-Fuzzy Approach for Object Detection in Dynamic Backgrounds for Surveillance Systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Chacon-Murguia, M.I. ; Visual Perception Applic. on Robotic Lab., Chihuahua Inst. of Technol., Chihuahua, Mexico ; Gonzalez-Duarte, S.

Object detection is a fundamental aspect in surveillance systems. Although several works aimed at detecting objects in video sequences have been reported, many are not tolerant to dynamic background or require complex computation in addition to manual parameter adjustments. This paper proposes an adaptive object detection method to work in dynamic backgrounds without human intervention. The proposed method is based on a neural-fuzzy model. The neural stage, based on a one-to-one self-organizing map (SOM) architecture, deals with the dynamic background for object detection as well as shadow elimination. The fuzzy inference Sugeno system mimics human behavior to automatically adjust the main parameters involved in the SOM detection model, making the system independent of the scenario. Results of the model over real video scenes show its robustness. These findings are comparable to the results obtained with human intervention to define the parameters of the model. A quantitative comparison with methods reported in the literature is also provided to show the performance of the system.

Published in:

Industrial Electronics, IEEE Transactions on  (Volume:59 ,  Issue: 8 )