By Topic

Template-Based Shell Clustering Using a Line-Segment Representation of Data

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Tsaipei Wang ; Dept. of Comput. Sci., Nat. Chiao Tung Univ., Hsinchu, Taiwan

This paper presents the algorithms and experimental results for template-based shell clustering when the datasets are represented by line segments. Compared with point datasets, such representations have several advantages, which include better scalability and noise immunity, as well as the availability of orientation information. Using both synthetic and real-world image datasets, we have experimentally demonstrated that line-segment-based representations result in both better accuracy and better efficiency in shell clustering.

Published in:

Fuzzy Systems, IEEE Transactions on  (Volume:19 ,  Issue: 3 )