Cart (Loading....) | Create Account
Close category search window

Person De-Identification in Videos

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Agrawal, P. ; Center for Visual Inf. Technol., Int. Inst. of Inf. Technol., Hyderabad, India ; Narayanan, P.J.

Advances in cameras and web technology have made it easy to capture and share large amounts of video data over to a large number of people. A large number of cameras oversee public and semi-public spaces today. These raise concerns on the unintentional and unwarranted invasion of the privacy of individuals caught in the videos. To address these concerns, automated methods to de-identify individuals in these videos are necessary. De-identification does not aim at destroying all information involving the individuals. Its ideal goals are to obscure the identity of the actor without obscuring the action. This paper outlines the scenarios in which de-identification is required and the issues brought out by those. We also present an approach to de-identify individuals from videos. Our approach involves tracking and segmenting individuals in a conservative voxel space involving x, y , and time. A de-identification transformation is applied per frame using these voxels to obscure the identity. Face, silhouette, gait, and other characteristics need to be obscured, ideally. We show results of our scheme on a number of videos and for several variations of the transformations. We present the results of applying algorithmic identification on the transformed videos. We also present the results of a user-study to evaluate how well humans can identify individuals from the transformed videos.

Published in:

Circuits and Systems for Video Technology, IEEE Transactions on  (Volume:21 ,  Issue: 3 )
Biometrics Compendium, IEEE

Date of Publication:

March 2011

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.