By Topic

Bipedal walking trajectory generation based on ZMP and Euler's equations of motion

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Barkan Ugurlu ; Department of Advanced Robotics, Italian Institute of Technology, Via Morego, 30, 16163, Genoa, Italy ; Atsuo Kawamura

This article is aimed at presenting a technique to generate bipedal walking trajectories that can be applied to humanoid robots. The proposed method is based on maintatining the dynamic balance by using the ZMP criterion throughout single support phases. To be able to reach this goal, we employed ZMP equations in spherical coordinates, so that the rate change of intrinsic angular momentum terms in ZMP equations are included naturally by using Euler's equations of motion. Thus, undesired torso angle fluctuations are successfully suppressed comparing to other methods in which intrinsic angular momentum rate changes are ignored or zero-referenced. Applying the aforementioned technique, we firstly performed simulations on a 3-D dynamic simulator. Upon simulations, we conducted walking experiments on the actual robot MARI-3. In conclusion, we obtained dynamically equilibrated and bipedal walking cycles in which torso angles are well suppressed in comparison with the conventional approach.

Published in:

2010 10th IEEE-RAS International Conference on Humanoid Robots

Date of Conference:

6-8 Dec. 2010