Scheduled System Maintenance on May 29th, 2015:
IEEE Xplore will be upgraded between 11:00 AM and 10:00 PM EDT. During this time there may be intermittent impact on performance. We apologize for any inconvenience.
By Topic

Small-scale helicopter system identification model using recurrent neural networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Taha, Z. ; Centre for Product Design & Manuf., Univ. of Malaya, Kuala Lumpur, Malaysia ; Deboucha, A. ; Bin Dahari, M.

Designing a reliable flight control for an autonomous helicopter requires a high performance dynamics model. This paper studies the recurrent neural network nonlinear model identification of a small scale helicopter. We have selected a Nonlinear AutoRegressive with eXogenous Inputs SeriesParallel (NARXSP) network model which identifies the dynamics model of an unmanned aerial helicopter from real flight data. The identification process is conducted by using the well known Levenberg-Marquardt learning algorithm. The obtained dynamics model shows good fitness with the actual data. This accuracy might be used to realize a reliable flight control for an autonomous helicopter.

Published in:

TENCON 2010 - 2010 IEEE Region 10 Conference

Date of Conference:

21-24 Nov. 2010