Cart (Loading....) | Create Account
Close category search window

Multibit Operation of Cu/Cu-GeTe/W Resistive Memory Device Controlled by Pulse Voltage Magnitude and Width

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Sang-Jun Choi ; Syst. LSI, Samsung Electron. Co., Ltd., Yongin, South Korea ; Ki-Hong Kim ; Park, Gyeong-Su ; Hyung-Jin Bae
more authors

We report the demonstration of multilevel operation using Cu/Cu-GeTe/W nonvolatile resistive memory devices for enhanced storage density. We incorporated Cu atoms into GeTe solid-electrolyte switching layers in Cu/Cu-GeTe/W nonvolatile resistive memory devices by applying a bias to the sample holder during a radio-frequency sputtering process. By analyzing the dependence of the device current (resistance) on both the pulse input voltage magnitude and width, we achieved four distinct resistance levels that correspond to the 2-bit operation of a single memory cell. Moreover, a model was suggested and discussed to account for the observed multibit operation.

Published in:

Electron Device Letters, IEEE  (Volume:32 ,  Issue: 3 )

Date of Publication:

March 2011

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.