Cart (Loading....) | Create Account
Close category search window
 

A Detailed Analytical Model of a Salient-Pole Synchronous Generator Under Dynamic Eccentricity Fault

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Babaei, M. ; Sci. & Res. Branch, Dept. of Electr. Eng., Islamic Azad Univ., Tehran, Iran ; Faiz, J. ; Ebrahimi, B.M. ; Amini, S.
more authors

In this paper, a new detailed analytical model of a salient-pole synchronous generator (SPSG) under dynamic eccentricity (DE) is presented which is capable of accounting for the effects of magnetic saturation, rotor pole shoe saliency, and space distribution of stator phases and rotor winding. A real form of rotor pole shoes is taken into account in the proposed SPSG air-gap function distribution. Saturation effects incorporate into the air-gap function of SPSG as a simple proposed analytic equation that varies by the generator load and operating condition. Furthermore, variation of the resulted air-gap distribution of SPSG in the presence of DE fault is then computed precisely and the inverse air-gap function calculated using Fourier series in order to compute time varying self- and mutual-inductances of stator phases and rotor winding via the modified winding function approach (MWFA). The computed inductances are used for simulation of SPSG and studying the frequency spectrum of stator line current in the presence of DE fault. It is shown that the results of proposed model are closer to the finite-element (FE) computation results compared to the available analytic models.

Published in:

Magnetics, IEEE Transactions on  (Volume:47 ,  Issue: 4 )

Date of Publication:

April 2011

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.