By Topic

Hamilton–Jacobi Formulation for Reach–Avoid Differential Games

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Margellos, K. ; Dept. of Electr. Eng. & Inf. Technol., Swiss Fed. Inst. of Technol. (ETH), Zürich, Switzerland ; Lygeros, J.

A new framework for formulating reachability problems with competing inputs, nonlinear dynamics, and state constraints as optimal control problems is developed. Such reach-avoid problems arise in, among others, the study of safety problems in hybrid systems. Earlier approaches to reach-avoid computations are either restricted to linear systems, or face numerical difficulties due to possible discontinuities in the Hamiltonian of the optimal control problem. The main advantage of the approach proposed in this paper is that it can be applied to a general class of target-hitting continuous dynamic games with nonlinear dynamics, and has very good properties in terms of its numerical solution, since the value function and the Hamiltonian of the system are both continuous. The performance of the proposed method is demonstrated by applying it to a case study, which involves the target-hitting problem of an underactuated underwater vehicle in the presence of obstacles.

Published in:

Automatic Control, IEEE Transactions on  (Volume:56 ,  Issue: 8 )