Cart (Loading....) | Create Account
Close category search window
 

Applying Particle Swarm Optimization to estimate software effort by multiple factors software project clustering

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Jin-Cherng Lin ; Dept. of Comput. Sci. & Eng., Tatung Univ., Taipei, Taiwan ; Han-Yuan Tzeng

In the IT industry, precisely evaluate the effort of each software development project to develop cost and development schedule management to the software company in the software are count for much. Since a project, majority of development teams will feel time isn't enough to use or the project valuation be false to make the software project failed. However the cost of the software project is almost a manpower cost, manpower cost and then become a direct proportion with development schedule, so precise effort the valuation more seem to be getting more important. Consequently, this research will use Pearson product-moment correlation coefficient and one-way analyze to select several factors then used K-Means clustering algorithm to software project clustering. After project clustering, we use Particle Swarm Optimization that take mean of MRE (MMRE) as a fitness value and N-1 test method to optimization of COCOMO parameters. Finally, take parameters that finsh the optimization to calculate the software project effort that is want to estimation. This research use 63 history software projects data of COCOMO to test. The experiment really expresses using base on project clustering with multiple factors can make more effective base on effort of the estimate software of COCOMO's three project mode.

Published in:

Computer Symposium (ICS), 2010 International

Date of Conference:

16-18 Dec. 2010

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.