By Topic

Autonomous Virulence Adaptation Improves Coevolutionary Optimization

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Cartlidge, J. ; Sch. of Comput., Eng. & Phys. Sci., Univ. of Central Lancashire, Preston, UK ; Ait-Boudaoud, D.

A novel approach for the autonomous virulence adaptation (AVA) of competing populations in a coevolutionary optimization framework is presented. Previous work has demonstrated that setting an appropriate virulence, v, of populations accelerates coevolutionary optimization by avoiding detrimental periods of disengagement. However, since the likelihood of disengagement varies both between systems and over time, choosing the ideal value of v is problematic. The AVA technique presented here uses a machine learning approach to continuously tune v as system engagement varies. In a simple, abstract domain, AVA is shown to successfully adapt to the most productive values of v. Further experiments, in more complex domains of sorting networks and maze navigation, demonstrate AVA's efficiency over reduced virulence and the layered Pareto coevolutionary archive.

Published in:

Evolutionary Computation, IEEE Transactions on  (Volume:15 ,  Issue: 2 )