By Topic

Node Reclamation and Replacement for Long-Lived Sensor Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Bin Tong ; Microsoft Corp., Redmond, WA, USA ; Guiling Wang ; Wensheng Zhang ; Chuang Wang

When deployed for long-term tasks, the energy required to support sensor nodes' activities is far more than the energy that can be preloaded in their batteries. No matter how the battery energy is conserved, once the energy is used up, the network life terminates. Therefore, guaranteeing long-term energy supply has persisted as a big challenge. To address this problem, we propose a node reclamation and replacement (NRR) strategy, with which a mobile robot or human labor called mobile repairman (MR) periodically traverses the sensor network, reclaims nodes with low or no power supply, replaces them with fully charged ones, and brings the reclaimed nodes back to an energy station for recharging. To effectively and efficiently realize the strategy, we develop an adaptive rendezvous-based two-tier scheduling scheme (ARTS) to schedule the replacement/reclamation activities of the MR and the duty cycles of nodes. Extensive simulations have been conducted to verify the effectiveness and efficiency of the ARTS scheme.

Published in:

Parallel and Distributed Systems, IEEE Transactions on  (Volume:22 ,  Issue: 9 )