By Topic

Speaker verification using support vector machine with LLR-based sequence kernels

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Chao, Yi-Hsiang ; Dept. of Appl. Geomatics, Ching Yun Univ., Taoyuan, Taiwan ; Tsai, W.-H. ; Hsin-Min Wang

Support vector machine (SVM) has been shown powerful in binary classification problems. In order to accommodate SVM to speaker verification problem, the concept of sequence kernel has been developed, which maps variable-length speech data into fixed-dimension vectors. However, constructing a suitable sequence kernel for speaker verification is still an issue. In this paper, we propose a new sequence kernel, named the log-likelihood ratio (LLR)-based sequence kernel, to incorporate LLR-based speaker verification approaches into SVM without needing to represent variable-length speech data as fixed-dimension vectors in advance. Our experimental results show that the proposed sequence kernels outperform the conventional kernel-based approaches.

Published in:

Chinese Spoken Language Processing (ISCSLP), 2010 7th International Symposium on

Date of Conference:

Nov. 29 2010-Dec. 3 2010