By Topic

Short Erasure Correcting LDPC IRA Codes over GF(q)

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Garrammone, G. ; Inst. of Commun. & Navig., German Aerosp. Center (DLR), Wessling, Germany ; Matuz, B.

This paper investigates non-binary low-density parity-check (LDPC) erasure correcting codes suitable to guarantee reliable transmission in wireless communications systems. In particular, irregular repeat-accumulate (IRA) codes are considered, characterized by linear-time encoding complexity. The performance of non-binary IRA codes is compared with their binary counterparts on the packet erasure channel (PEC), with considerable advantages for the non-binary construction. Particularly, it is illustrated that the performance of short-block-length erasure correcting IRA codes over Galois fields (GFs) of order q >; 2 approaches, under maximum-likelihood (ML) decoding, the performance of ideal maximum distance separable (MDS) codes. This is especially appealing in the context of satellite communications, where efficient codes are required to cope with small link margins.

Published in:

Global Telecommunications Conference (GLOBECOM 2010), 2010 IEEE

Date of Conference:

6-10 Dec. 2010