By Topic

Performance Analysis of Cognitive Radio Systems under QoS Constraints and Channel Uncertainty

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Sami Akin ; Dept. of Electr. Eng., Univ. of Nebraska-Lincoln, Lincoln, NE, USA ; Mustafa Cenk Gursoy

In this paper, performance of transmission in cognitive radio systems over time-selective flat fading channels is studied under quality of service (QoS) constraints and channel uncertainty. Cognitive secondary users are assumed to initially perform sensing over the transmission channel to detect the activities of the primary users. Then, depending on the channel sensing result, they choose their transmission power policies and perform channel estimation. Following the training phase, they transmit data through the channel. The activities of the primary users are modeled as a two-state Markov process. A state transition model is constructed to model the cognitive transmissions. Statistical limitations on the buffer lengths are imposed to take into account the QoS constraints, and an average power constraint on the secondary users is considered to limit the interference to the primary users. The maximum throughput under these statistical QoS constraints is identified by finding the effective capacity of the cognitive radio channel. Numerical results are provided for the power and rate policies.

Published in:

Global Telecommunications Conference (GLOBECOM 2010), 2010 IEEE

Date of Conference:

6-10 Dec. 2010