By Topic

Routing and Link Layer Protocol Design for Sensor Networks with Wireless Energy Transfer

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Doost, R. ; Dept. of Electr. & Comput. Eng., Northeastern Univ., Boston, MA, USA ; Chowdhury, K.R. ; Di Felice, M.

Wireless sensor networks are equipped with batteries with limited charge, and are often deployed in conditions that make their retrieval and replacement infeasible. Thus, energy conservation has been a primary consideration for protocol design for such networks. Recent advancements in the transfer of energy wirelessly over large distances, such as through radio frequency electromagnetic (EM) waves and magnetic coupling, may give rise to a new class of networks that allow the sensors to be charged on the field, thereby prolonging the network lifetime. Moreover, wireless charging though EM waves may be undertaken in the same unlicensed band as that used for communication, leading to several unique protocol design challenges for such a network. The contribution of this paper is threefold: First, a set of experiments is undertaken to investigate the effect of distance and location on the energy transfer through EM waves. Second, a new routing metric based on the charging ability of the sensor nodes is proposed. Finally, an optimization framework is developed to determine the optimal charging and transmission cycle for the sensor network, resulting in enhanced lifetime of the network under user-specified end-to-end constraints of throughput and latency.

Published in:

Global Telecommunications Conference (GLOBECOM 2010), 2010 IEEE

Date of Conference:

6-10 Dec. 2010