By Topic

Connectivity-Based Distance Estimation in Wireless Sensor Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Baoqi Huang ; Nat. ICT Australia Ltd., Australian Nat. Univ., Canberra, ACT, Australia ; Changbin Yu ; Anderson, B.D.O. ; Guoqiang Mao

Distance estimation is of great importance for localization and a variety of applications in wireless sensor networks. In this paper, we develop a simple and efficient method for estimating distances between any pairs of neighboring nodes in static wireless sensor networks based on their local connectivity information, namely the numbers of their common one-hop neighbors and non-common one-hop neighbors. The proposed method involves two steps: estimating an intermediate parameter through a Maximum-Likelihood Estimator (MLE) and then mapping this estimate to the associated distance estimate. In the first instance, we present the method by assuming that signal transmission satisfies the ideal unit disk model but then we expand it to the more realistic log-normal shadowing model. Finally, simulation results show that localization algorithms using the distance estimates produced by this method can deliver superior performances in most cases in comparison with the corresponding connectivity-based localization algorithms.

Published in:

Global Telecommunications Conference (GLOBECOM 2010), 2010 IEEE

Date of Conference:

6-10 Dec. 2010