Cart (Loading....) | Create Account
Close category search window
 

Layered Tabu Search Algorithm for Large-MIMO Detection and a Lower Bound on ML Performance

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Srinidhi, N. ; Dept. of ECE, Indian Inst. of Sci., Bangalore, India ; Datta, T. ; Chockalingam, A. ; Rajan, B.S.

In this paper, we are concerned with low-complexity detection in large multiple-input multiple-output (MIMO) systems with tens of transmit/receive antennas. Our new contributions in this paper are two-fold. First, we propose a low-complexity algorithm for large-MIMO detection based on a layered low-complexity local neighborhood search. Second, we obtain a lower bound on the maximum-likelihood (ML) bit error performance using the local neighborhood search. The advantages of the proposed ML lower bound are i) it is easily obtained for MIMO systems with large number of antennas because of the inherent low complexity of the search algorithm, ii) it is tight at moderate-to-high SNRs, and iii) it can be tightened at low SNRs by increasing the number of symbols in the neighborhood definition. Interestingly, the proposed detection algorithm based on the layered local search achieves bit error performances which are quite close to this lower bound/or large number of antennas and higher-order QAM. For e.g., in a 32 × 32 V-BLAST MIMO system, the proposed detection algorithm performs close to within 1.7 dB of the proposed ML lower bound at 10-3 BER for 16-QAM (128 bps/Hz), and close to within 4.5 dB of the bound for 64-QAM (192 bps/Hz).

Published in:

Global Telecommunications Conference (GLOBECOM 2010), 2010 IEEE

Date of Conference:

6-10 Dec. 2010

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.