Cart (Loading....) | Create Account
Close category search window
 

An Opportunistic Service Differentiation Routing Protocol for Cognitive Radio Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Kiam Cheng How ; Sch. of Electr. & Electron. Eng., Nanyang Technol. Univ., Singapore, Singapore ; Maode Ma ; Yang Qin

Cognitive Radio (CR) is a new paradigm that enable nodes to exploit unoccupied frequency spectrum for transmissions. Cognitive Radio Networks (CRNs) have been proposed to enable wireless mesh networks to communicate via dynamic channels. Many existing research consider routing in static CRNs with relatively stable communication channel where the duration of the availability of the communication channel is much longer than the communication time. However, there is limited routing related research in dynamic CRNs where the average available duration of the communication channel can be much shorter than the communication time. To address this, we propose a cross-layer cognitive routing protocol, the Opportunistic Service Differentiation Routing Protocol (OSDRP) for the dynamic CRNs. OSDRP discovers the minimum delay - maximum stability route in CRNs by considering the availability of spectrum opportunity in addition to switching delay and queuing delay across primary user networks. In addition, service differentiation is achieved through a combination of transmit power control and opportunistic routing. Simulation results demonstrate that OSDRP can achieve much better performance in terms of lower delay compared to other existing routing protocols in various scenarios.

Published in:

Global Telecommunications Conference (GLOBECOM 2010), 2010 IEEE

Date of Conference:

6-10 Dec. 2010

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.