By Topic

Using dynamic voltage scaling for energy-efficient flash-based storage devices

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Sungjin Lee ; Sch. of Comput. Sci. & Eng., Seoul Nat. Univ., Seoul, South Korea ; Jihong Kim

NAND flash memory is commonly known as a power-efficient storage medium. Because of the increasing complexity of flash-based storage devices, however, it is more difficult to achieve good power-efficiency without considering an energy-efficient storage device design. In this paper, we investigate the potential benefit of dynamic voltage/frequency scaling (DVFS) on the energy-efficiency of flash-based storage devices. We first develop a performance/power model for a flash device by using an FPGA-based flash device platform. We then propose a simple DVFS heuristic algorithm that exploits workload fluctuations of a flash device to achieve a significant reduction in energy consumption without performance degradation. Experimental results show that a flash device with DVFS can reduce energy consumption by up to 20%-30%.

Published in:

SoC Design Conference (ISOCC), 2010 International

Date of Conference:

22-23 Nov. 2010