Scheduled System Maintenance:
Some services will be unavailable Sunday, March 29th through Monday, March 30th. We apologize for the inconvenience.
By Topic

New Ultra-High-Isolation RF Switch Architecture and Its Use for a 10–38-GHz 0.18- \mu m BiCMOS Ultra-Wideband Switch

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Cuong Huynh ; Electr. & Comput. Eng. Dept., Texas A&M Univ., College Station, TX, USA ; Cam Nguyen

A new RF switch architecture with ultrahigh isolation and possible gain is proposed, analyzed, and demonstrated using 0.18-μm BiCMOS technology. The new RF switch architecture achieves an ultrahigh isolation through implementation of a new RF leaking cancellation technique in which the RF leaking signal is suppressed by combining with its replica using a balun. Its isolation is substantially higher than that produced by a conventional switch topology. An analysis of the new active balun employed in the proposed RF switch is also conducted, showing its distinguished characteristic of good balance across ultra-wide frequency ranges, making possible not only the achievement of extremely high isolation, but also ultra-wideband isolation for the RF switch. Additionally, the active balun also provides some gain to compensate for the inherent loss of the RF switch. The newly designed 0.18-μm BiCMOS RF switch exhibits an ultra-broadband performance from 10 to 38 GHz with - 2.6-dB loss to 0.4-dB gain, isolation from 40 to about 70 dB, and input return loss from 8 to 20 dB under small-signal conditions. Within 35.5-38.5 GHz, its isolation reaches extremely high values, with the highest isolation around 70 dB at 36 GHz, approaching the measurable limit of the vector network analyzer. Measured insertion loss and isolation under large-signal conditions at 35 GHz show around 1-2 and 51.5 dB, respectively. The RF switch consumes a dc current of only 8 mA from a 1.8-V source. The extremely high isolation achievable by the new RF switch demonstrates the possibility of pushing RF system performance limited by switch isolation to a next level.

Published in:

Microwave Theory and Techniques, IEEE Transactions on  (Volume:59 ,  Issue: 2 )