By Topic

A new approach to phase selection using fault generated high frequency noise and neural networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Bo, Z.Q. ; Sch. of Electron. & Electr. Eng., Bath Univ., UK ; Aggarwal, R.K. ; Johns, A.T. ; Li, H.Y.
more authors

Single-pole autoreclosure is quite extensively used in long-line applications and involves tripping only the faulted phase for single-phase earth faults. Reliable and fast phase selection is thus imperative in order to avoid potential problems of system insecurity and instability. Conventional phase selectors, primarily based on power frequency measurands, can suffer some impairment in performance because of their heavy dependency on varying system and fault conditions. However, the advent of artificial neural networks (ANNs), with their ability to map complex and highly nonlinear input/output patterns, provides an attractive potential solution to the long-standing problems of accurate and fast phase selection. This paper describes the design of a novel phase selector using ANNs. The technique is based on utilising fault generated high frequency noise (captured through the high voltage coupling capacitor of a conventional capacitor voltage transformer) to essentially recognise the various patterns generated within the frequency spectra of the fault generated noise signals on the three phases, for the purposes of accurately deducing the faulted phase. The paper demonstrates a new concept and methodology in phase selection which will facilitate single-pole autoreclosure applications in power systems

Published in:

Power Delivery, IEEE Transactions on  (Volume:12 ,  Issue: 1 )