By Topic

Support Vector Selection and Adaptation for Remote Sensing Classification

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Kaya, G.T. ; Dept. of Comput. Sci. & Eng., Istanbul Tech. Univ., Istanbul, Turkey ; Ersoy, O.K. ; Kamasak, M.E.

Classification of nonlinearly separable data by nonlinear support vector machines (SVMs) is often a difficult task, particularly due to the necessity of choosing a convenient kernel type. Moreover, in order to get the optimum classification performance with the nonlinear SVM, a kernel and its parameters should be determined in advance. In this paper, we propose a new classification method called support vector selection and adaptation (SVSA) which is applicable to both linearly and nonlinearly separable data without choosing any kernel type. The method consists of two steps: selection and adaptation. In the selection step, first, the support vectors are obtained by a linear SVM. Then, these support vectors are classified by using the K-nearest neighbor method, and some of them are rejected if they are misclassified. In the adaptation step, the remaining support vectors are iteratively adapted with respect to the training data to generate the reference vectors. Afterward, classification of the test data is carried out by 1-nearest neighbor with the reference vectors. The SVSA method was applied to some synthetic data, multisource Colorado data, post-earthquake remote sensing data, and hyperspectral data. The experimental results showed that the SVSA is competitive with the traditional SVM with both linearly and nonlinearly separable data.

Published in:

Geoscience and Remote Sensing, IEEE Transactions on  (Volume:49 ,  Issue: 6 )