By Topic

A Novel Ku-Band Radiometer/Scatterometer Approach for Improved Oceanic Wind Vector Measurements

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Suleiman O. Alsweiss ; School of Electrical Engineering and Computer Science, University of Central Florida , Orlando, FL, USA ; Peth Laupattarakasem ; W. Linwood Jones

This paper presents a conceptual conical-scanning radiometer/scatterometer (RadScat) instrument design for the purpose of improving satellite ocean vector wind retrievals under rain-free conditions. This technique combines the wind vector signature in the passive linearly polarized ocean brightness temperatures with the anisotropic signature of multiazimuthal radar cross-sectional measurements to retrieve oceanic surface wind vectors. The performance of the RadScat is evaluated using a Monte Carlo simulation based on actual measurements from the SeaWinds scatterometer and the Advanced Microwave Scanning Radiometer onboard the Advanced Earth Observing Satellite II. The results demonstrate significant improvements in wind vector retrievals, particularly in the near-subtrack swath, where the performance of conical-scanning scatterometers degrades.

Published in:

IEEE Transactions on Geoscience and Remote Sensing  (Volume:49 ,  Issue: 9 )