By Topic

Robust Slippage Degree Estimation Based on Reference Update of Vision-Based Tactile Sensor

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Ito, Y. ; Grad. Sch. of Eng., Nagoya Univ., Nagoya, Japan ; Youngwoo Kim ; Obinata, G.

In this paper, we propose a new slippage degree estimation method of a vision-based tactile sensor. The advantage of the vision-based tactile sensor is simultaneous acquisition of the slippage degree, a multidimensional force and a moment. A CCD camera captures the sensor surface which has regularly arrayed dots. The slippage degree on the sensor surface is determined by the stick ratio obtained from the displacements of dots in the captured images. In our previous work , the stick ratio was successfully applied to avoid slippage or the shape deformation of grasped objects. Based on the adaptive selection of the reference image and the compensation of the dot displacement, the proposed method in this study extends use of the previously developed algorithm, to dynamically complex but general situations as follows. First, the contact surface deforms after the macroscopic slippage or the slippage direction is changed. Second, the contact surface rotates with an applied moment. Third, the captured image is locally zoomed with a significant change of a grip force. A heuristic weighted average method is also proposed to decrease each dot's variation in the captured image. Usefulness of the proposed method is confirmed through experimental results.

Published in:

Sensors Journal, IEEE  (Volume:11 ,  Issue: 9 )