Cart (Loading....) | Create Account
Close category search window
 

A design of high-performance pipelined architecture for H.264/AVC CAVLC decoder and low-power implementation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Byung-Yup Lee ; Dept. of Inf. & Commun., Hanbat Nat. Univ., Daejeon, South Korea ; Kwang-Ki Ryoo

In this paper, we propose a highly efficient VLSI architecture for context-based adaptive variable-length coding (CAVLC) decoder. In multimedia data processing systems, the real-time processing requirement is the most critical problem and the only requirement that must be satisfied. Thus, an architecture which has a short processing time though a high throughput, can meet the requirement at low operating frequencies. Consequently, the architecture can have an advantage of low power consumption. We propose two methods to improve the throughput of CAVLC decoders. The first method eliminates the pipeline hazard in a pipelined architecture for CAVLC decoder. The second method expands the capacity of the barrel shifter. Experimental results show that the proposed architecture can improve throughput by about 45%. As a result, the proposed architecture greatly reduces the operating frequency for real-time processing, which is the key factor of reducing power consumption. The synthesis result shows that the design achieves the maximum operating frequency at 125 MHz, and the hardware cost is about 12.6 K under a 0.18 um CMOS process.

Published in:

Consumer Electronics, IEEE Transactions on  (Volume:56 ,  Issue: 4 )

Date of Publication:

November 2010

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.