By Topic

Relationships Between Complex Impedance, Thermal Response, and Noise in TES Calorimeters and Bolometers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

9 Author(s)
M. A. Lindeman ; Netherlands Institute for Space Research, Utrecht, The Netherlands ; B. Dirks ; J. van der Kuur ; P. A. J. de Korte
more authors

Complex impedance measurements are widely used to characterize superconducting transition edge sensors (TESs) in bolometers and microcalorimeters. Typically, models are fit to impedance data to find parameters which pertain to the performance of these detectors. After the parameters are determined, the models are then used to compute the response and noise of these devices. In this paper, we present general relationships between the measured impedance, the thermal response to power in the TES, and noise. We describe a method for measuring αI and βI of the superconducting phase transition, which does not require model fitting. We find bolometer response is determined from the impedance provided that the absorber is strongly coupled to the TES electron system. We also demonstrate how to calculate upper and lower limits on the noise directly from the impedance data without modeling. Additionally, the relations can be used to check the validity of the models and to understand what information can and cannot be obtained from measurements of impedance, response, and noise.

Published in:

IEEE Transactions on Applied Superconductivity  (Volume:21 ,  Issue: 3 )