We are currently experiencing intermittent issues impacting performance. We apologize for the inconvenience.
By Topic

Stability Margin Scaling Laws for Distributed Formation Control as a Function of Network Structure

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
He Hao ; Dept. of Mech. & Aerosp. Eng., Univ. of Florida, Gainesville, FL, USA ; Barooah, P. ; Mehta, P.G.

We describe a methodology for modeling, analysis and distributed control design of a large vehicular formation whose information graph is a D-dimensional lattice. We derive asymptotic formulae for the closed-loop stability margin based on a partial differential equation (PDE) approximation of the formation. We show that the exponent in the scaling law for the stability margin is influenced by the structure of the information graph and by the control architecture (symmetric or asymmetric). For a given fixed number of vehicles, we show that the scaling law can be improved significantly by employing a higher dimensional information graph and/or by introducing small asymmetry (mistuning) in the nominally symmetric proportional control gains. We also provide a characterization of the error introduced by the PDE approximation.

Published in:

Automatic Control, IEEE Transactions on  (Volume:56 ,  Issue: 4 )