By Topic

Measuring Code Quality to Improve Specification Mining

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Claire Le Goues ; University of Virginia, Charlottesville ; Westley Weimer

Formal specifications can help with program testing, optimization, refactoring, documentation, and, most importantly, debugging and repair. However, they are difficult to write manually, and automatic mining techniques suffer from 90-99 percent false positive rates. To address this problem, we propose to augment a temporal-property miner by incorporating code quality metrics. We measure code quality by extracting additional information from the software engineering process and using information from code that is more likely to be correct, as well as code that is less likely to be correct. When used as a preprocessing step for an existing specification miner, our technique identifies which input is most indicative of correct program behavior, which allows off-the-shelf techniques to learn the same number of specifications using only 45 percent of their original input. As a novel inference technique, our approach has few false positives in practice (63 percent when balancing precision and recall, 3 percent when focused on precision), while still finding useful specifications (e.g., those that find many bugs) on over 1.5 million lines of code.

Published in:

IEEE Transactions on Software Engineering  (Volume:38 ,  Issue: 1 )